34 research outputs found

    Anti-Inflammatory Protein of Schistosoma japonicum Directs the Differentiation of the WEHI-3B JCS Cells and Mouse Bone Marrow Cells to Macrophages

    Get PDF
    Sj16 is an anti-inflammatory protein identified from Schistosoma japonicum. Our previous studies showed that recombinant Sj16 (rSj16) could suppress host's inflammatory responses and inhibit macrophage maturation. In the present study, the effects of rSj16 on the differentiation of the murine myeloid leukemia WEHI-3B JCS cell line and on mouse hematopoiesis were investigated. Our data demonstrated that rSj16 expressed and purified from Escherichia coli could suppress the proliferation of the WEHI-3B JCS cells in a time- and concentration-dependent manner, while not affect the viability of the cells. Further studies indicated that rSj16 induced macrophage differentiation of the WEHI-3B JCS cells, and arrested the cell cycle in the G1/G0 and G2/M phases. The macrophage differentiation of the rSj16-treated WEHI-3B JCS cells was confirmed by their expression of macrophage specific antigen F4/80 and phagocytic activity. Furthermore, our results revealed that rSj16 biased the colony formation of mouse bone marrow cells towards macrophage linage

    Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK

    Get PDF
    AbstractThe hepatocyte growth factor (HGF) receptor, Met, is frequently overexpressed in nasopharyngeal cancer (NPC). Here, we showed for the first time that human NPC cells with high Met expression were more sensitive to the cell motility and invasion effect of HGF. The downregulation of Met by small interfering RNA decreased tumor cell invasion/migration. HGF significantly increased matrix metalloproteinase-9 production. This was inhibited by blocking phosphatidylinositide 3-kinase (PI3K) and c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling pathways. We also demonstrated that PI3K induced activation of JNK, with Akt as a potential point of this cross-talk. These results provide new insights into the molecular mechanism responsible for NPC progression and metastasis

    A physiologically-based pharmacokinetic model of oseltamivir phosphate and its carboxylate metabolite for rats and humans

    Get PDF
    Oseltamivir phosphate (OP, Tamiflu®) is a widely used prodrug for the treatment of influenza viral infections. Orally administered OP is rapidly hydrolyzed by the carboxylesterases in animals to oseltamivir carboxylate (OC), a potent influenza virus neuraminidase inhibitor. The goals of this study were to develop and validate a physiologically-based pharmacokinetic (PBPK) model of OP/OC in rats and humans, and to predict the internal tissue doses for OP and OC in humans after receiving OP orally. To this end, a PBPK model of OP/OC was first developed in the rat, which was then scaled up to humans by replacing the physiological and biochemical parameters with human-specific values. The proposed PBPK model consisted of an OP and an OC sub-models each containing nine first-order, flow-limited tissue/organ compartments. OP metabolism to OC was assumed to carry out mainly by hepatic carboxylesterases although extra-hepatic metabolism also occurred especially in the plasma. The PBPK model was developed and validated by experimental data from our laboratories and from the literature. The proposed PBPK model accurately predicted the pharmacokinetic behavior of OP and OC in humans and rats after receiving a single or multiple doses of OP orally or an OC dose i.v. The PBPK model was used to predict the internal tissue doses of OP and OC in a hypothetical human after receiving the recommended dose of 75 mg/kg OP b.i.d. for 6 days. Steady-state OC concentrations in the plasma and major organs such as the lung and the brain were higher than the minimum in vitro IC50 reported for H1N1 influenza virus neuraminidase, confirming OP is an effective, anti-viral agent. OP side-effects in the gastrointestinal tract and brain of humans were explainable by the tissue doses found in these organs. The PBPK model provides a quantitative tool to evaluate the relationship between an externally applied dose of OP and the internal tissue doses in humans. As such the model can be used to adjust the dose regimens for adult patients in disease states e.g., renal failure and liver damage

    Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides.

    Get PDF
    In Chinese medicine, ginseng (Panax ginseng C.A. Meyer) has long been used as a general tonic or an adaptogen to promote longevity and enhance bodily functions. It has also been claimed to be effective in combating stress, fatigue, oxidants, cancer and diabetes mellitus. Most of the pharmacological actions of ginseng are attributed to one type of its constituents, namely the ginsenosides. In this review, we focus on the recent advances in the study of ginsenosides on angiogenesis which is related to many pathological conditions including tumor progression and cardiovascular dysfunctions. Angiogenesis in the human body is regulated by two sets of counteracting factors, angiogenic stimulators and inhibitors. The 'Yin and Yang' action of ginseng on angiomodulation was paralleled by the experimental data showing angiogenesis was indeed related to the compositional ratio between ginsenosides Rg1 and Rb1. Rg1 was later found to stimulate angiogenesis through augmenting the production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Mechanistic studies revealed that such responses were mediated through the PI3K-->Akt pathway. By means of DNA microarray, a group of genes related to cell adhesion, migration and cytoskeleton were found to be up-regulated in endothelial cells. These gene products may interact in a hierarchical cascade pattern to modulate cell architectural dynamics which is concomitant to the observed phenomena in angiogenesis. By contrast, the anti-tumor and anti-angiogenic effects of ginsenosides (e.g. Rg3 and Rh2) have been demonstrated in various models of tumor and endothelial cells, indicating that ginsenosides with opposing activities are present in ginseng. Ginsenosides and Panax ginseng extracts have been shown to exert protective effects on vascular dysfunctions, such as hypertension, atherosclerotic disorders and ischemic injury. Recent work has demonstrates the target molecules of ginsenosides to be a group of nuclear steroid hormone receptors. These lines of evidence support that the interaction between ginsenosides and various nuclear steroid hormone receptors may explain the diverse pharmacological activities of ginseng. These findings may also lead to development of more efficacious ginseng-derived therapeutics for angiogenesis-related diseases

    Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells.

    Get PDF
    We here provide definitive evidence that ginsenoside-Rg1, the pharmacologically active component of ginseng, is a functional ligand of the glucocorticoid receptor (GR) as determined by fluorescence polarization assay. Rg1 increased the phosphorylation of GR, phosphatidylinositol-3 kinase (PI3K), Akt/PKB and endothelial nitric oxide synthase (eNOS) leading to increase nitric oxide (NO) production in human umbilical vein endothelial cell. Rg1-induced eNOS phosphorylation and NO production were significantly reduced by RU486, LY294,002, or SH-6. Also, knockdown of GR completely eliminated the Rg1-induced NO production. This study revealed that Rg1 can indeed serve as an agonist ligand for GR and the activated GR can induce rapid NO production from eNOS via the non-transcriptional PI3K/Akt pathway

    Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function

    Get PDF
    EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation

    MicroRNA profiling study reveals MIR-150 in association with metastasis in nasopharyngeal carcinoma

    Get PDF
    © 2017 The Author(s). MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.Link_to_subscribed_fulltex

    Chemical structure of tryptanthrin.

    No full text
    <p>Chemical structure of tryptanthrin.</p

    The favourable binding position of tryptanthrin with lowest binding free energy in the ATP-binding site of VEGFR2 (PDB code 1YWN) as analyzed by molecular docking study.

    No full text
    <p>(A) The three-dimensional diagram displays the interaction of tryptanthrin (the white stick) to the ATP-binding site of VEGFR2 with the labelled amino acid residue Cys917 which significantly contributed to the binding. (B) The two-dimensional diagram shows the interactions of tryptanthrin to the amino acid residues in the ATP-binding site. Colors of the residues indicate the forms of interactions as follows: van der Waals forces, green; polarity, magenta. Green arrow represents H-bonding with the amino acid main chain.</p
    corecore